Default Bayesian model determination methods for generalised linear mixed models
نویسندگان
چکیده
A default strategy for fully Bayesian model determination for GLMMs is considered which addresses the two key issues of default prior specification and computation. In particular, the concept of unit information priors is extended to the parameters of a GLMM. A combination of MCMC and Laplace approximations is used to compute approximations to the posterior model probabilities to find a subset of models with high posterior model probability. Bridge sampling is then used on the models in this subset to approximate the posterior model probabilities more accurately. The strategy is applied to four examples.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملLocation Reparameterization and Default Priors for Statistical Analysis
This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...
متن کاملAnalysis of Dependency Structure of Default Processes Based on Bayesian Copula
One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...
متن کاملGeneralised linear mixed model analysis via sequential Monte Carlo sampling
We present a sequential Monte Carlo sampler algorithm for the Bayesian analysis of generalised linear mixed models (GLMMs). These models support a variety of interesting regression-type analyses, but performing inference is often extremely difficult, even when using the Bayesian approach combined with Markov chain Monte Carlo (MCMC). The Sequential Monte Carlo sampler (SMC) is a new and general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2010